// File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. import { APIResource } from "../core/resource.mjs"; import { loggerFor, toFloat32Array } from "../internal/utils.mjs"; export class Embeddings extends APIResource { /** * Creates an embedding vector representing the input text. * * @example * ```ts * const createEmbeddingResponse = * await client.embeddings.create({ * input: 'The quick brown fox jumped over the lazy dog', * model: 'text-embedding-3-small', * }); * ``` */ create(body, options) { const hasUserProvidedEncodingFormat = !!body.encoding_format; // No encoding_format specified, defaulting to base64 for performance reasons // See https://github.com/openai/openai-node/pull/1312 let encoding_format = hasUserProvidedEncodingFormat ? body.encoding_format : 'base64'; if (hasUserProvidedEncodingFormat) { loggerFor(this._client).debug('embeddings/user defined encoding_format:', body.encoding_format); } const response = this._client.post('/embeddings', { body: { ...body, encoding_format: encoding_format, }, ...options, }); // if the user specified an encoding_format, return the response as-is if (hasUserProvidedEncodingFormat) { return response; } // in this stage, we are sure the user did not specify an encoding_format // and we defaulted to base64 for performance reasons // we are sure then that the response is base64 encoded, let's decode it // the returned result will be a float32 array since this is OpenAI API's default encoding loggerFor(this._client).debug('embeddings/decoding base64 embeddings from base64'); return response._thenUnwrap((response) => { if (response && response.data) { response.data.forEach((embeddingBase64Obj) => { const embeddingBase64Str = embeddingBase64Obj.embedding; embeddingBase64Obj.embedding = toFloat32Array(embeddingBase64Str); }); } return response; }); } } //# sourceMappingURL=embeddings.mjs.map